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 Introduction.  The concepts of work and energy are introduced in 
all beginning physics classes.  At that beginning level, the student has 
attained a proficiency in algebra and trigonometry only, and as such, 
many educators believe the student is unable to appreciate or 
understand the development of the work energy theorem.  These 
educators typically present work as force times displacement, kinetic 
energy and potential energy as magic formulas, and spend much time 
discussing how these energies transform from one form to the next.  
Problems are authored and solved as if all problems can be solved by 
“conservation of energy” and that it, energy, is always conserved.  
Textbook sections entitled “Optional - Work done by a variable force.”, 
clearly set the tone of lack of importance of this situation, for students 
and instructors alike.  Some text book authors do address the idea that 
work is an integral part of the energy concept, but fail to paint the big 
picture of path independence or dependence, which ties all the work 
energy components together in a logical fashion, favoring to create a 
number of “special cases” that the student memorizes, but rarely 
understands.  The fact that it is not necessary to know how the energy 
transforms from form to form when solving problems, the real power of the 
work energy theorem, is totally missed. 
 This condemnation of physics education may in fact seem  
somewhat harsh.  Textbook authors could use the afore noted lack of 
math skill as argument to defend their approach to the work energy 
omission.  Still, there is an understandable thread connecting work and 
energy, path function, point function, and that story needs to be told 
because it provides the foundation for understanding (or lack thereof) in 
thermodynamics courses to follow. 
 In areas of physics, history will help convey a sense of the concept.  
With force, we have but to look to Newton to see how this concept was 
developed.  Newton’s laws are tightly packaged in a brief moment in 
history.  Work energy, however, has no moment in history and no 
founding father.  Work energy is similar to a meal in reverse, the dessert 
served first, and lastly the meat and potatoes.  The work energy story 
cannot be told in chronological order because it was not developed in any 
logical order.  It simply evolved. 
 The goal of this paper is to present the work energy theorem to the 
student of calculus based physics in an order that is logical, not 
historical.  To show the beauty of the arrangement, the power of the 
results, so that for the student, the Work Energy Theorem finally falls 
together with crystal clarity.   
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 Prolog, In search of Vis Visa.   Prior to the time of Galileo (1546-
1642 A.D.), science was conducted largely by philosophical argument. 
Ideas were purposed, and elegant arguments proposed to lend reason to 
the premise.  In the Aristotelian world view, experimentation was 
perceived to be “unnatural” and therefore not appropriate for discerning 
the workings of the natural world.   

It is Galileo who is thought of as the father of experiment.  His 
cleverness in designing experiments, which verify premise, provided a 
new way of knowing, and experiment is considered the standard for the 
verification of premise today. 

At Galileo's time in history, the intellects of the day were in search 
of the cause variable, the Vis Visa, the “living force” of motion.  
Experiments involving the collision of balls were conducted.  Huygens 
(1629-1695) and others would notice that if a moving ball were to collide 
into a string of stationary balls of the same mass, that the moving ball 
would stop and a ball at the other end of the string would start motion, 
having the same velocity as which the incident ball previously had.  This 
experiment and others of similar nature presented a peculiar outcome.  
An outcome, which seemed to suggest that something of an unusual 
nature, had occurred.  It was thought that if this experiment could be 
understood, one might discover the Vis Visa, the cause for the effect. 
 We now understand this experiment in terms of both momentum 
and energy.  Toys, consisting of swinging balls able to collide, are 
commonplace.  Yet, in the days of Galileo, the experimental outcome 
could only be considered peculiar.  Humanity was in no position to fully 
understand the principles involved and could only classify the result.  
Enter the era of Newton (1642-1727). 
 Around 1687 A.D., Newton publishes his thoughts of Force.  
Newton’s three force laws provide a new understanding of force, 
acceleration, impulse, and momentum.  The conceptual tools needed to 
understand all of mechanics are in place.  The Calculus is also invented 
by Newton, providing a mathematical tool to manipulate these physical 
laws.  Newton provides the tools that will ultimately open the pathway to 
the understanding of what is now called the work energy theorem.  
Newton does not complete the concept however and many other 
scientists will contribute to its evolution. 
 By the time of Helmholtz (1821-1894), and with the help of 
Bernouli, Lagrange, Laplace, and others, the work energy theorem would 
be understood.  The stage would be set for Carnot (1796-1832) to extend 
the work energy theorem to its next logical level, Thermodynamics!  
Clasius, Kelvin, Maxwell, Boltzman, Nernst, and finally Gibbs, would 
evolve thermodynamics to its full glory.  We now tell the story in a much 
different order. 
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 Work.  Work is where we start our logical discussion. The concept 
of work can be interpreted as the measurement of the accomplishment of 
a task.  To do work, effort (force) is required.  Having effort however does 
not mean that work is done.  The effort must accomplish something…a 
displacement must accompany the effort.  If either the force or the 
displacement is zero, the work will be zero.  Another requirement is that 
the force must be in the direction of the displacement.  If the force is not 
in the direction of the displacement, only the component of the force, in 
the direction of the displacement, can be used to compute the work.  For 
the special case where the force is constant, the work may be computed 
as: 

φcosxFWork rr
∆= , 

where φ  is the angle between the force and displacement vector when 
arranged tail-to-tail.  The above work equation is often written in 
shorthand, dot product, notation as:  Work xF rr

∆•=  
  

 
 
 
 

φ 

F 

∆x 

 
When using the word work, one should keep in mind the following 

sentence: Work done by ________, on ___________.  The first blank is 
filled in by the force in question.  The remaining blank specifies the 
object that displaces.  Examples: 

 
Work done by my force on the ball. 

Work done by the force of gravity on the ball. 
Work done by the net force on the ball. 

 
The target force, or force group, should always be specified. 
 

Work is a scalar quantity.  The sign on the calculation is controlled 
by the cosine of the angle.  If the angle is less than 90 degrees, the work 
is positive.  If the angle is greater than 90 degrees, the work is negative.  
If the angle is 90 degrees, the work will be zero. 

Since work is a scalar, the total work done for a sequence of tasks 
is just the algebraic sum of the work done for each task in the sequence. 

 
The formula, φcosxFWork rr

∆= , will compute work as long as the 

force is constant, however for a variable force, a more general expression, 
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an integral, must be used.   Consider the computation of the work done 
by the variable force in the figure below: 

 
                10 
 
 
   F(newtons) 
                  5 
 
 
                   0         
                       0            2            4       x (meters) 
 
Our tactic will be to view the problem as a sequence of works.  

First, the work done to displace the initial two meters, and then the work 
done to displace the final two meters.   

• We have a constant force of 10 newtons with a displacement 
of  2 meters.  The work done is Work = |10 n| |2m| cos 0 = 
20 nm (or joules). 

• We have a constant force of 5 newtons with a displacement  
of 2 meters.  The work done is Work = |5n| |2m| cos 0 = 10 
joules. 

The total work done is thus 20j + 10j = 30 joules.  Notice that in the 
above computations,  we have effectively computed the area of two 
rectangles!  Our total work is the area under the force vs displacement 
graph.  This is true in all situations.  We have only to devise a clever way 
of computing this area and we can compute the work done for any 
variable force. 
 The clever computation method, called an integral, is in effect an 
“exact approximation”.  The integral in calculus is developed by first 
cutting the area under the curve into rectangular strips of equal width 
(∆x).  The approximate area is then computed by summing the area of all 
strips.  The exact area is then obtained by looking at the trend when the 
strip width, ∆x, is made infinitely small and the number of strips is made 
correspondingly infinitely large.   
 

       Work  ∫∑ •≡→∆∆•=
∝ dxF0x  where, 
1

xFi
here dx is considered an infinitely small ∆x.  This is the definition of the 
calculus integral.   
 

By using a graph of force verses displacement, even the non-
calculus physics student can understand work done by a variable force.  
Areas can be computed from polygon formulas and/or approximated 
using rectangular strips.   
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When computing work 

double check the sign on the 
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 Work done by the Net Force to change an objects Speed.  Here 
we explore the work calculation targeting the sum of the vector forces 
(Fnet) on a single point mass (or center of mass).  Starting with the 
definition of work, 
 

∫ •≡ sdFWork NetFnet

rr
 

Since from Newton, Fnet = m a, we substitute for Fnet, 
( )∫ •= sdamWorkFnet

rr  

By definition, a = dv/dt and so we substitute for a, 

∫ •





= sd

dt
vdmWorkFnet

r
r

 

We now remove the mass from the integral as CONSTANT, 

∫ •= sd
dt
vdmWorkFnet

r
r

 

We re-associate dt with ds, 

∫ •=
dt
sdvdmWorkFnet
r

r  

By definition, ds/dt is velocity, we substitute. 

∫ •= vvdmWorkFnet
rr  

We now evaluate the dot product by reasoning that dv could be broken 
into two components, one in the direction of v, and one component at 90 
degrees to v.  The cosine applied to the 90 degree component produces 
zero (a direction change but not a speed change).  This leaves us with, 

∫=
f

i

v

v
Fnet dvvmWork    =  ( ) 2222

2
1

2
1

2
1

ifif mvmvvvm −=−  

 This outcome is much unexpected; Where in general work is a path 
function, we find that the work done by the net force is NOT a path 
function at all.  It is a POINT function.  The work done by the net force is 
determined by the initial and final speeds alone, not by any speeds along 
the path, nor by the directions of any of these speeds.  This, is Discovery!  
So much so, that we will create a new quantity, Kinetic Energy = ½ m v2, 
for which the work done by the net force is the change in kinetic energy.  
 The word energy, coming from the German language (Gr. energos, active; 
from en, in + ergon, work), is best translated as the ability to do work, by 
virtue of having some unique condition or privilege of position.  Energy is 
not work.  It is the ability to do work.  As we have seen from the above 
derivation, work is done when energy changes.  The change in energy is 
work.  “Kinetic” identifies the unique condition – motion. 
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 We now re-invent and rename the work done by the net force; and 
introduce the fundamental version of the Work Energy Theorem. 
 

KEWork FnetBy ∆=  
 

where 

( )22

2
1

if vvmKE −≡∆  

This outcome is the fundamental step in the development of other refined 
versions of the work energy theorem.  From experiment, to theory.  It was 
waiting for the tools of Newton. 
 
 As currently formulated, we now have the basis of an Accounting 
System and the sign convention also has its basis in accounting, not 
direction.  When positive work is done, the energy of the system 
increases.  When negative work is done, the energy of the system 
decreases. 
 
 

-Work by sys. +Work on sys. 

∆KE 

The System 
 
 
 
 
 
 

Work by Fnet, changes the Kinetic energy of the System. 
 
 Interlude.  Looking at the Big Picture.  One part of this picture 
we have not yet seen is that the work done by the net force, is equal to 
the sum of the individual works, done by all of the individual forces that 
comprise the net force.  This fact is easy to show by derivation and 
example.  Let FG, FE, Ff, represent gravitational, elastic, frictional, etc,  
general force categories. 

( ) ( )
KEWWWxdFxdFxdF

xdFxdFxdFFFxdFWork

FfEGFfEG

EGFfEGnetByFnet

∆≡+++=+•+•+•=

+•+•=•+++=•=

∫ ∫ ∫
∫∫ ∫

......

......
rrrrrr

rrrrrrrrrr

 

 
Work By Fnet = Work By Gravitation+Work By Elastic+Work By Friction+…=∆KE 

 
 Given that we have previously discovered that work done by the 

net force yields a Point Function, and that this fact is striking if for no 
other reason than that we will never need to perform that integral again, 
we might ask the question:  “If we perform the work integral on other 
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force categories such as gravitation , might the result turn out similar”?  
“Will those integrals yield Point Functions as well”?   
 The answer to this question is “Yes, in some cases it will”!  It is that 
fact which leads to the remaining energy concepts.   

The Work – Energy Theorem master classification scheme is devised 
as follows: 

1.  Select a category of force. 
2.  Apply the work integral to that force. 
3.  Examine the result...is it a Point Function? 
4.  If no, go no further. 
5.  If yes, move it algebraically to the right side of the work energy 
equation. 
6.  AND, re-name it as a change in energy. 

Path functions on the left of the equals sign, point functions on the right. 
This is how the remaining configurational energy forms are contrived.  
We will now embark on that journey. 
 
 Gravitational Potential Energy.  We start with the task, compute 
the work done by the force of gravity, near the earths’ surface, to increase 
an objects altitude, at constant velocity.  We will again consider a single 
point mass (or center of mass).  Of course, the force of gravity alone has 
never increased an objects altitude, never the less, we may perform the 
computation.  We start by showing an arbitrary path for which the mass 
will move along.  Near the earth, the force of gravity may be expressed as 
Weight = mg.  We also show a small displacement vector, ds; the angle 
between the force and displacement vector is α. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Path 

hf 

hi 

dh 

α 

ds 
φ 

mg 
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Starting with the definition of work, Work , ∫= dwmg

 
we first fabricate dw as 

sdgmdw rr αcos=  
Since α and φ are supplementary angles, we replace the cos α with –cos φ, 

sdgmdw rr φcos−=  
Next, we recognize that |ds|cos φ = dh and substitute, 

dhgmdw r
−=  

Notice that the effect of introducing dh is that no matter how the 
direction of ds varies along the path,  dh becomes the vertical projection 
of ds.  We now apply the integral, 

dhgmWork
f

i

h

h
∫ −=

r  

hmghhmgWork ifmg ∆−=−−= )(  
We notice that if we impose a “local coordinate system” for the variable h, 
upward is positive and downward is negative, that the result will also 
hold true when the object decreases altitude.  We also notice that the 
result is a Point Function! The work by “mg” does not depend on the path 
by which we change altitude, only the change in altitude.  Our final step 
is to algebraically move the result to the right side of the work energy 
theorem and give it a new name, the change in gravitational potential 
energy, ∆GPE.  This leads to a new version of the Work Energy 
Theorem. 
 
 

GPEKEWork ∆+∆=mgexcept  forces allby  done  
where, 

∆KE = ( )22

2
1

if vvM −  

∆GPE = hmg ∆  
 Notice the exclusion of the force “mg” from the work done by the 
net force.  This is because “mg” work now exists on the other side of the 
equation under a new name, ∆GPE.  This quantity also has a new sense; 
with the sign change, it becomes the work done against (not by) the force 
of gravity.  The work energy theorem has evolved to a new level. 
 

G.Kapp, 2/20/04 10



 
 Elastic Potential Energy.  We start with the task, compute the 
work done by the Hooke’s law spring force, to move that springs free end 
away from its relaxed position at constant velocity.  Of course, a spring 
will not, by itself, move its free end away from the relaxed position.  This 
will not stop us from performing the computation. 
 

 We should first remind the reader of the equation relating 
the force of a Hooke’s law spring to its displacement.  This 
equation is: 

xkFSpring
rr

−=  
The variable “k” is an empirical positive constant known as the 
“Hooke’s law spring constant”.  It is generally obtained through 
experiment by plotting the spring force as a function of end 
displacement.  This plot produces a straight line of slope “k” and of 
intercept, zero.  Thus, the local variable “x” must be assigned the 
value of zero when the spring is in its relaxed state.   

 
 
 
 
 
 

FSpring 

dx 
 

We apply the work integral, 
xdFWork sFspring
rr

•= ∫  

We expand the dot product, noting that the force of the spring is always 
180 degrees to that of the displacement. 

∫∫ −=−=
f

i

f

i

x

x

x

xFspring dxxkdxkxWork  || 180cos  

We complete the integral, 

=FspringWork  ( )22

2
1

if xxk −−  

We notice that the outcome of the integral is a Point Function.  It 
depends on the initial and final position of the spring and none of those 
positions between initial and final.  In addition, notice that the 
plus/minus sign convention for x is not important since the x value is 
squared.  Only the relaxed position need be carefully assigned, to zero.  
We now apply the final step.  Algebraically move the result to the right 
side of the equation and assign it a new name, the change in elastic 
potential energy, ∆EPE. 
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Work Energy Theorem.   Below is our final version of the Work 

Energy Theorem: 
 

EPEGPEKEWork ∆+∆+∆=  
where,  

WORK, is the work done by all forces in the net force EXCEPT “mg” 
and “kx”. 

∆KE   = ( )22

2
1

if vvm −  

∆GPE = hmg ∆  

∆EPE = ( )22

2
1

if xxk −  

and, mass must remain constant, up is positive for “h”, and x = 
zero when relaxed. 
 
 
 -WORK done by 

system on 
surroundings by 
all forces except: 
mg and –kx. 

+WORK done on 
system by all 
forces except: mg 
and –kx. 

SYSTEM 

∆KE+∆GPE+∆EPE 

 
 
 
 
 
 
 
 
 
 
The above schematic diagram represents the accounting basis of the 
work energy theorem.  That, which is put in, minus that which is pulled 
out, equals the change.  With this variation of the work energy theorem, 
we possess deposit+,  withdraw-, and account transfer possibilities. 
 
 When applying the work energy theorem to a problem, we also 
follow a procedure similar to an account audit.  The procedure is as 
follows: 

1. Select an audit time interval, initial and final.  Even 
though the times are not used as variables, it is important to 
understand that this is an audit over a time. 

2. Evaluate the energy side of the work energy theorem for 
all objects in the system at the initial and final times.  
Do not view the energy status anywhere along the path!  
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Remember, Energy change is a POINT FUNCTION.  This is 
usually the easier part of the audit. 

3. On the work side of the work energy theorem, we ask the 
question:  “did any external force, not excluded (mg, kx) 
from the net force, do work anywhere along the path between 
initial and final?”.  If the answer is yes, we formulate the 
work integral for that force.  This part of the audit is the 
more difficult.  A force vector diagram and a small 
displacement vector (ds) near by will help to think this 
through.  Remember, the concept is to look for a small 
amount of work, dw, and then add them up along the path.  
If the forces involved are constant forces, this procedure is 
much easier to accomplish. 

4. Finally, we solve the fabricated work energy equation for 
the desired variable or relationship. 

 
What the Work Energy Theorem is NOT.  The student must 

understand the limitations to the work energy theorem.  The concept is 
SCALAR, not vector.  The work energy theorem will never explain why a 
physical system responds as it does.  True explanations lie in the 
concepts of Force and Motion.  Vector quantities.  The work energy 
theorem is only an accounting concept.  An accountant can never explain 
why a business makes or looses money, only where the money went and 
how much; only the business owner can explain why.  Similarly, only the 
physicist, using Force and motion can explain why a system responds as 
it does.  The work energy theorem is however an extremely powerful tool 
to do physics.  It will lead to relationships useful in the solution of many 
problems. 

 
The law of conservation of energy.  It is usually stated that: for 

the system of the universe, energy can neither be created nor destroyed 
(except in a nuclear reaction).  Energy is conserved!  Whether we choose to 
debate this statement or not, let us understand one important point:  
The system of the Universe is all but useless to the solution of real  
problems.  For the system of the universe, all forces are internal; they 
add as vectors to exactly ZERO.  The solution of real problems requires 
system boundaries significantly smaller than the universe.  Therefore, 
one must for these smaller systems, carefully examine them for external 
forces capable of doing work.  For systems smaller than the universe, 
useful systems, Energy is not necessarily conserved. 
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Example Application. 
 An object of mass 2 kg is placed on an incline of 30 degrees where 
on, a 400 n/m spring is attached.  The object is pushed down on the 
spring such that the spring compresses .2 meters (spring not attached to 
the mass) and then released.  There is friction between the mass and 
incline (µk = .3).  How far up the incline, measured from the release 
position, will the mass travel? 

 
Solution. 
The solution to this problem could be accomplished entirely using force 
and motion equations; the student should consider attempting it in that 
manner.  Here, we will attempt the solution using the Work Energy 
Theorem.   

First, a sketch is in order. 
v=0 

∆h 
∆S 

 m 

v=0 
xf=0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
We show the b
Also shown is 
has been assig

 Second
will be used fo

 
With the form 
final.  For the 
so there is no 
beauty of a po
the same at in

For the 
altitude, as sh
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lock and spring in the compresses state at time initial.  
the block and spring (dotted) at time final.  The value ∆S 
ned to the total displacement that the block will traverse.  
, we introduce the form of the work energy theorem which 
r the solution. 

WorkBy all except Mg, kx = ∆KE + ∆GPE + ∆EPE 

selected, we evaluate the energy changes from initial to 
kinetic energy, vinitial and vfinal are identical, both are zero, 
change in kinetic energy; this term will be zero.  This is the 
int function!  Even if the values were not zero, if they are 
itial and final, the kinetic energy change would be zero. 
gravitational potential energy, there is an increase in 
own by ∆h in the diagram; this term will be non zero.   
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For the elastic potential energy, the free end of the spring is 
initially compressed, and at time final it is at its relaxed state; this term 
will also be non zero. 
 Third, we ask the question “did any external and non excluded 
force do work anywhere along the displacement path”?  To answer the 
question we will construct a force vector diagram. 
 
 
 

mg 

Ff 
30 

C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The surface compression force, “C”, is 90 degree
vector and thus does no work.  Both the weight 
force of the spring, “Fspring” are excluded from th
equation.  This leaves the kinetic friction force a
 We will need to express this friction force
compression and the coefficient of friction. 

CF kf µ=  
and from noting that the acceleration perpendic
we have the compression force “C” in balance wi
component of the weight vector, “mg Cos 30”. 

30cosmgF kf µ=  
We also notice that this force is constant  so the
not necessary.  
Finally, we assemble the work energy theorem: 

WorkBy all except Mg, kx = ∆KE + ∆GP

( 2

2
1180cos ff xkhmgSF +∆=∆

2
1180cos30cosk hmgSmg +∆=∆µ
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 in terms of the 

ular to the incline is zero, 
th the perpendicular 

 integral form of work is 

E + ∆EPE 

)2
ix−  

( )22
if xxk −  



The work energy theorem is thus applied.  To solve for ∆S, we require a 
substitution for ∆h.  From trigonometry, ∆h = ∆S sin 30.  We substitute 
this relationship along with the value of xf (which is zero). 

( )20
2
130sin180cos30cos ik xkSmgSmg −+∆=∆µ  

We are now in a position to solve the expression for ∆S. 

)30cos30(sin2

2

k

i

mg
kxS

µ+
=∆  

 

meters 537.
)30cos3.30(sinm/s 9.8 kg 2 2

m) (.2  n/m 400
2

2

=
+

=∆S  

 
 
 
 
 
 

G.Kapp, 2/20/04 16


