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Rotational Dynamics of Rigid Solids 

 
 1  Introduction.  It is this author’s intent to start with the laws of 
Newton, applied to a collection of particles, and deduce all laws of rotation.  
To provide a crystal clear path from one to the next.  In  consideration of 
this journey, the student must be aware that the basis for true 
understanding and clarity is as much a mater of perspective and 
interpretation, as it is an exercise in mathematics and the application of 
fundamental laws of nature. 
  

front 

 
 

 
 
 
 
 

cm axis Y axis  
Consider the above situation:  We have a rigid block.  We give it a 180 

degree rotation about each of the two axes shown, the center of mass axis, 
and the Y axis which is parallel to the cm axis.  For the cm axis, the result 
is, 

back 

cm axis 

 
 
 
 
 
 
 
 Y axis 
 
 

back 

 and for the Y axis, the result is, 

Y axis 

 
 
 
 
 
 
 
 
We compare the result of each operation.  Many observers would consider 
the results as dissimilar – truly visual inspection would agree.  The cm 

G. Kapp, 11/4/09 2 



rotation produces no translation of the center of mass of the box whereas 
the Y rotation produces considerable displacement of the center of mass of 
the box.  And yet, BOTH were 180 degree rotations.  A mater of perspective 
and interpretation.   
 

We require a distinction between position, and orientation.  While the 
change in position of the box is different for each event, both events show 
the same change in orientation of the box.  The orientation has changed by 
180 degrees.  We will designate the objects cm position with the usual 
position vector Rcm, and define the objects orientation as its angular position 
θ.  It can also be seen from the example that a change in angular position (a 
rotation) about a given axis is equivalent to a change in angular position (a 
rotation) about any other parallel axis.  

 
It is important to create a clear understanding of the above paragraph 

here and now.  We often use words such as “rotate” and  “spin”; and in most 
cases our mind associates an axis through the body of the object.  When we 
say “rotate” or “spin”, we must THINK change in orientation – change in 
angular position.  We must also be cautioned to guard against our mind’s 
selection of axis.  Consider the following question: Is a ball rolling along on a 
flat table spinning about an axis which passes thru the point of contact?   

 
 
 
 
 
 
  

The answer is of course, Yes! 
 
 We now define the quantities of angular motion.  The angular position 
variable (orientation) is defined as θ.  The angular velocity variable (the rate 
of change of angular position) is defined as ω.  The angular acceleration 
variable (the rate of change of angular velocity) is defined as α.  The defining 
relationships are: 

dt
dθω ≡  

 

dt
dωα ≡  

 
Notice the similarity to the translational variables, velocity and acceleration. 
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Consider a new question.  We observe a point mass particle moving 
through space.  We observe it for only an infinitesimally short time.  Is the 
particles’ velocity translational or angular?  It would seem that the question 
is impossible to answer.  If we were able to observe the particle at other 
times,  before and after the given observation, we may feel we are in a better 
position to answer the question.  The answer is however a mater of 
perspective and interpretation!  We have the ability to describe the motion of 
the particle as either translational, or angular.  It is a mater of choice.  We 
often make this choice as a result of other information, its’ history and 
future, however the choice can not be wrong, only inconvenient.  It is 
exactly for this reason, convenience, that the angular quantities are 
conceived.   

We have provided the mind set for the discussions to follow, we next 
present the tools. 

 
2.  Coordinate system.  Of the many coordinate systems available, 

mathematics and engineering tend to favor the “right hand” coordinate 
system.  Positive angular quantities are found by placing the thumb in the 
direction of positive on the translational axis (right hand) and observing the 
direction of the fingers. To represent the angular quantity as a vector, we 
think “thumb”, not “fingers”.  This preserves the vector icon of the arrow. 

 

θx 

y θy 
 

Thumb  
 
 
 

x  

θz

fingers 
 
 
 
 
 z 
 
 
It must also be remembered that the choice of coordinate system is 
ultimately that of the problem solver.  The above coordinate system is not 
mandatory, it will however provide a basis of communication. 
 
 
 3.  Circular to Angular Transformations.  Three circular to angular 
transformations will be used to make the connection between the 
translational view and the angular view.  Their basis lies in the fact that we 
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can easily view the circular motion of a particle as both translational and 
angular.  

Consider a particle which is displaced along a circular path of radius 
r, by an amount Δs.  

r 

Δs 

Δθ 

 
 
 
  
 
 
 
 
This displacement could also be interpreted as an angular displacement of 
Δθ about an axis thru the center of that circle directed out from the page.  
Using the formula for the length of a circular sector from geometry, we have 

rS  θΔ=Δ  
where the angular displacement MUST be measured in radians.   
 We now consider the velocity of our particle.  By differentiating the 
above relationship with time, for constant radius, we have 

r
dt
d

dt
dS θ

=  

We recognize the term on the left of the equal sign, ds/dt, as the speed of 
the particle along the path, the tangential velocity, vt.  The derivative on the 
right side of the equal sign, dθ/dt,  is also recognized as the angular velocity 
of the particle about any “out of the page” axis, ω.  This yields the second 
transform,  

rvt  ω=  
 The third and final transform is obtained from the above in like 
manner, 

r
dt
d

dt
dvt  ω

=  

rat  α=  
where at is the acceleration component tangent to the circle of motion, and 
α is the angular acceleration of the particle about any axis perpendicular to 
the plane of the circle. 

r a
r v

r   S

t

t

α
ω

θ

=
=

=

 

All angular quantities require radian angle measure.  Vt and at are 
measured in the "r=0" frame of reference.  The Vector aspects of these 
equations will be discussed later. 
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 4.  The Cause Variable.  We start with the question, “why do objects 
angularly accelerate”?  To answer this question, let us consider a simple 
“see saw” ( a rigid board balanced on a fulcrum). 
 
 
 
 
 
We consider the effect of the application of the force F1 at various places 
along the board.  When applied to the center ( at the fulcrum) we observe 
nothing.  The fulcrum will push up on the board with a compression force to 
maintain equilibrium.  It is when we move the force application point toward 
the end of the board that we notice a rotation about the fulcrum; a change 
in the angular velocity of the board.  An angular acceleration.  Experience 
suggests that as either the force value is increased, or the application point 
is moved further from the fulcrum, the angular acceleration increases.  The 
cause of angular acceleration involves the force magnitude, the forces 
direction, and the location of application.  We will call this Cause variable 
TORQUE.   

F1
F1 F1

  
  
 

d ⊥ 

F  
 
 
 
 
 

‘p’ axis  
The Torque, due to force F, about axis ‘p’ (out of the page), is found in 

the following procedure: 
1. Extend the “line of action” of the force. 
2. Locate and measure the perpendicular distance from the line of 

action of the force, back to the axis.  “d⊥ ” must be both 
perpendicular to the “line of action” and the axis. 

3. Compute the magnitude of the Torque as:  τ = d⊥  F 
4. Assess the direction of the angular acceleration; this is also the 

direction of the Torque.  This can be done by physically holding 
down the paper at axis ‘p’ and pulling on the paper at the force 
application point.  In the diagram above, the direction would be 
counter clock wise (or out of the page if you think “thumb” instead 
of “fingers”). 
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Granted, the above procedure seems crude; it is.  It does however introduce 
at a fundamental level, what Torque is.  There are some important points to 
emphasize here. 
• The exact coordinate of the application of the force must be determined. 
• The translational coordinate system must be specified.  Choosing the 

axis is in effect choosing both the axis direction and the origin of the 
coordinate system. 

• The magnitude and direction of the Torque will depend on the coordinate 
system axis.  Note that if the line of action should go through the axis, d⊥ 
will be zero, and thus the Torque about that axis will also be zero. 

• The direction of the torque (“thumb”) is always perpendicular to the 
plane defined by the force vector and d⊥   ( in the direction defined by the 
axis). 

• When considering Torque, the sentence: “Torque due to _____, about 
_______ axis.”  should be in ones’ mind.  The first blank indicating the 
Force, or Force collection, and the second blank indicating the axis for 
the computation. 

 
This procedure has been formalized as a mathematical operator, similar to 
the DOT Product (scalar product) used to compute work.  The operator is 
called a CROSS Product (vector product).  The notation is: 

FR
rrr

×=τ  
where R is a location vector identifying the location of the force application 
point in the chosen coordinate system.   

Using the location vector, it is easy to show that d⊥= R sin φ, where φ 
is the angle acquired when the location vector and the force vector are 
positioned tail to tail, R is swept into F. 
 

φ 

R 

φ 

φ 

R 

d ⊥ 

F 

 
  
 
 
 
 
 
 
 
 
 
 F  
 
 
Torque is the CAUSE variable; the cause of angular acceleration.  
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5.  Mathematical Interlude.  At this point, we present the tools of 
Vector Arithmetic.  A right hand coordinate system is assumed.  The 
presentation is done without derivation.  Numerous texts on the subject 
may be consulted by the student unfamiliar with the topic.  Here, we will 
only remind the student of their existence. 

 
The Dot Product or scalar product as it is often called was used in the 

definition of work.  It is: 

BAzzyyxx BABABABABA →=++≡• φcos)()()(
rrrr

 

 
The Cross Product or vector product as it is often called was used in 

the definition of Torque.   It is possible execute the cross product operator 
as a pure vector operation using i,j,k notation.  This is accomplished by the 
evaluation of a 3 by 3 determinate, we also expand by minors: 

 

kBABAjBABAiBABA
BBB
AAA
kji

BA xyyxxzzxyzzy

zyx

zyx

rrr

rrr

rr
)()()( −+−−−=≡×  

 
The magnitude of the cross product may be computed as: 

BABABA →=× φsin
rrrr

 

 
The Cross Product is not commutative!   

Remember however, given all the fancy notation above, the 
fundamental meaning of BA

rr
× is: extend the line of action of the B vector (at 

location A), determine the perpendicular distance from that line of action to 
the axis, multiply B by that distance, and assess the direction as along the 
axis (+ or -). 
 
 Relationships using these two operators are listed below. 

1. 2AAA =•
rr

 
2.  0=× AA

rr

3. )( ABBA
rrrr

×−=× ,  not commutative, the order is important. 
4. )()()( CABACBA

rrrrrrr
×+×=+×  , distributive. 

5. scalarACBCBACBA =×•=•×=×• )()()(
rrrrrrrrr

 
6. vectorBACCABCBA =•−•=×× )()()(

rrrrrrrrv
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 To complete our mathematical interlude, we return to the circular to 
angular transformations.  These relationships, previously presented as 
scalar relationships, can now be interpreted as vector relationships.   
 

R 

ω 

y 
 
 vt 
 
 
 
 

x  
 
 
 
 
 
Consider a particle moving in a circular path of radius R at a speed vt.  
Examination of the three vectors, shows that their directions are all 
perpendicular to each other. 

z 

vt  
 
 
 
 

ω 

R  
 
 
 
 
Crossing ω into R will result in a vector perpendicular to the plane defined 
by ω and R, vt.   Thus, we may describe each of the circular to angular 
transformations using the Cross Product operator. 
 

R a

Rv

R     S

t

t
rrr

rrr

rrr

×=

×=

×=

α

ω

θ

 

 
A right hand coordinate system is assumed.   Vt and at are in the frame of 
reference of "R=0".  This concludes our mathematical interlude. 
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 6.  Angular Relationships; The Strategy.  Prior to developing the 
angular relationships, it is prudent to review the reasons we do so.  The 
reason is convenience.  We may always view an object as a large collection 
of small “point masses”; this view is what we will call the MICRO view.  The 
MICRO view is sufficient to understand all properties of motion of an object.  
Using the MICRO view to compute motion properties is however very 
cumbersome.  It requires many equations, and tedious mathematics.  If 
there should exist a single relationship, capable of similar computational 
power, it would seem wise to search it out.  If found, this equation will be 
considered a MACRO view.  This then outlines the strategy we will follow.   
 For the case of Vector relationships, there is a “trick” which we will 
commonly use, we will Cross Product the translational equation by a 
location vector from the left, followed by a series of simplifications and 
interpretations.  
 For the case of Scalar relationships, we will perform a simple 
summation, followed by simplification and interpretation. 
 In all cases, we will start with a physical relationship well founded in 
science. 
 
 7.  Cause and Effect.  Consider a collection of particles forming a 
rigid solid, constrained to rotate about the z axis. 
 
 
 

Ri 
mi 

αz 
 z Fi  

at  
 
 y 
 
 
 
 

x  
 
We start by applying F=ma to this particle at the instant shown, in the 
direction tangent to its motion in the x – y plane. 
                                                   tiii amF ,

rr
=              (single point) 

Next, we cross product both sides of the above equation by the particles 
location vector. 

tiiii amRFR )( rrrr
×=×  

The left side of the above equation is now interpreted as the Torque, due to 
Fi, about the z axis. 

itiiz amR )()( rrr
×=τ  
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Next, the scalar mi is factored out of the right side of the equation and the 
third circular to angular transformation replaces at. 

)( )( iziiiz RRm
rrrr

××= ατ  
The triple Cross Product is next expanded using eq. 6, 

)()()( BACCABCBA
rrrrrrrrv

•−•=×× , 
[ ])()()( ziiiiziiz RRRRm αατ

rrrrrrr
•−•=  

 
We are now in a position to interpret,  scalar is which 2

ii RRR =•
rr

, and 

 other.each   to90at  are  and R since  0 oαα =• ziR rr

This yields the result,  
 

ziiiz Rm ατ
rr 2)( =  

If we were to perform the above derivation on each and every particle, and 
add the individual results, we would arrive at 
 

izii

n

i
iz

n

i
Rm )()( 2

11
ατ
rr ∑∑

==

=  

Finally, for a rigid collection of points, all αi are identical and may be 
factored out of the summation giving 
 

zzii

n

i
z Rm ατ rr )( 2

1
∑∑

=

=
    (fixed axis) 

 We are now in a position to interpret and summarize the above 
equation. 

• represents the net Torque, due to all external forces, about the z 
axis.  It is the Cause Variable. 
∑ zτr

• zαr  is the resulting angular acceleration of the rigid solid about the z 
axis.  It is the Effect Variable. 

•  , a scalar, must be the objects resistance to being angularly 
accelerated about the z axis.  Each R

2
ii Rm∑

i is the location vector, measured 
perpendicular to the z axis, of each particle in the object.  We will 
provide a new name and variable for this macro quantity, moment of 
inertia, Iz about the z axis. 

 

Our Macro equation becomes,   zzz I∑ = ατ rr
    (rigid body, fixed axis) 
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 8.  Moment of Inertia, a Macro Quantity.  We have coined the term 
“moment of inertia” and assigned the meaning, resistance to angular 
acceleration.  It is interesting to note that the word “moment”, which we now 
associate with a time interval, was in fact defined as a “rotation”.  When we 
say “wait a moment”, we are in fact saying “wait for a rotation of the shadow 
on a sun dial clock”! 
 The moment of inertia of a point mass about an axis is: 

2
int  ⊥= RmI po  

where R⊥  is the distance, measured perpendicular to the axis, from the axis 
to the point. 
 For a collection of points in a rigid solid, their moment of inertia is 
given by: 

2
iicollection RmI ⊥∑=  

 The above summation can be performed over a rigid body as an 
integral to compute the moment of inertia of that body about a given axis: 

dmRI zz ∫ ⊥= 2
 

 
 The above computation maybe performed for a wide variety of objects, 
about various axis’, and tabled as MACRO quantities for the convenience of 
later use.   

As a parting thought, we remind the student that the moment of 
inertia is not shape dependent, it depends on how the objects mass is 
distributed as viewed from the chosen axis. 

 
9.  Newton’s Second Law for Rotation.  In the previous section, 

Cause and Effect,  we developed the angular view of F=ma.  We understand 
that Newton’s second law was stated in a much more general way, utilizing 
the concept of momentum.  We will here perform much the same derivation 
as in the Cause and Effect section, on Newton’s second law.  Consult the 
figure there for clarity. 

 
Newton’s second law for a particle is: 

dt
vmdF i

i
)( rr

=  

We will assume that F is an external force acting in the x – y plane on a 
particle at position R.  We Cross Product the above equation, on the left, by 
the position vector R. 

dt
vmdRFR i

iii
)( rrrr

×=×  
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We recognize the left side of the equation as the Torque, due to F, about the 
z axis on the particle.  On the right side of the equation, we move the 
constant R, into the derivative. 

{ }
dt

vmRd ii
iz

)()(
rr

r ×
=τ  

 It us useful at this time, to assign a new variable to the quantity 
within the brackets, 

{ })( vmRl rrr
×≡  , 

whose name will be angular momentum.   The result is Newton’s second law 
for angular motion:  

dt
ld
r

r
≡τ  

While the definition of angular momentum, { })( vmRl rrr
×≡  , may be 

useful for a single particle ( or the center of mass particle),  we will continue 
to expand it by substituting the second circular to angular transform. 

{ }
dt

RmRd izi
iz

][)(
rrr

r ××
=

ωτ  

We factor out the scalar, m, and expand the triple cross product, 
 

{ }
dt

RRmd izi
iz

])[()(
rrr

r ××
=

ωτ  

 

{ }
dt

RRRRmd ziii
iz

i
])[][(

)(
ωω

τ
rrrrrr

r •−•
=  

We are now in a position to interpret,  scalar is which 2
ii RRR =•

rr
, and 

 The resulting outcome is: other.each   to90at  are  and R since  0 oωω =• ziR rr

{ }
dt

mRd zi
iz

ωτ
r

r 2

)( =  

 
{ } { }

dt
Id

dt
mRd zziz

iz
ωω

τ
rv

r ⊥== ∑∑
][

)(
2

 

and it can be seen that the angular momentum of a rigid solid can also be 
expressed as: 

                                              ωv
r

⊥≡ Il     (Rigid solid, fixed axis) 
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10.  Angular Impulse and Momentum.  As one may suspect, one 

may reinvent Newton’s law for angular motion, and move it into a very 
useful form. Starting with 

dt
ld
r

r
≡τ  

we multiply both sides by dt, and integrate. 
lddt
rr

= τ  

∫ ∫= lddt
rrτ  

                                   ∫ Δ=Δ= )( ωτ rrr Ildt        (fixed axis) 
 
 Application of angular impulse and momentum is in many ways 
similar the translational version.  One interesting exception, is in the 
treatment of the Torque.  With clever selection of axis, it is often possible to 
make the torque due to an external force equal zero and further simplify the 
application. 
 
 
 

11.  Energy Relationships; The Strategy.  The total kinetic energy of 
any collection of particles, is the sum of the individual kinetic energies of 
the individual particles.  Here in lies our basic strategy.  There are however 
a few cautions which must be considered once a Macro form of that total 
energy is developed.  Kinetic energy is frame of reference dependent in that 
the underlying velocity (speed) is itself dependent on the frame of reference 
from which it is measured.  Work also depends on the frame of reference in 
that the displacement is depends on the frame of reference.   

For example, a ball rolling across a table fixed to the earth will have  
kinetic energy in the earth frame of reference, whereas in the ball’s center of 
mass frame of reference, the balls velocity and kinetic energy will be zero.  
This is not an energy violation; it is a mater of view.  The energy distribution 
in a system, and what forces may or may not do work is dependent on the 
frame of reference. 

When doing any energy audit, the student must clearly state the 
frame of reference, and then consider the forms and amounts of energy 
involved; taking care not to ignore an amount of energy, nor collect a single 
amount of energy twice! 
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12.  Rotational Energy; A Macro Form.  We start with a collection of 
identical particles which form a rigid solid, rotating about the zcm axis 
(which is also the collections center of mass) as shown. 
 

mi 

vi 

ωcm 

zcm 

Ri 

 
 
 
 
 
 
 
 
 
 
 
 
We compute the ith particles kinetic energy from the frame of reference of 
the particles center of mass. 

2

2
1

iii vmKE =  

For all particles, the total kinetic energy is the sum the individual kinetic 
energies. 

2

1
2

1
ii

n

i
itotal vmKEKE ∑∑

=

==  

We now examine the second circular to angular transformation to arrive at a 
substitution for v2. 

222 )()( iiiiiiiii RRRvvv ωωω =×•×=•=
rrrrrr  

We substitute in the kinetic energy equation, 
22

1
2

1
iii

n

i
total RmKE ω∑

=

=  

Note that for a rigid solid, although the vi are not identical, ω1= ω2= ω3  … 

= ωcm.  We factor out of the summation, ½ , and ωcm.
 

2

1

2

2
1

cm

n

i
iitotal RmKE ω⎟

⎠

⎞
⎜
⎝

⎛
= ∑

=

r
 

The quantity within the parentheses is recognized as the objects moment of 
inertia about the cm axis.  We now define the Macro Rotational Energy as: 
 

2

2
1 ωIKERE total =≡  

 
The above rotational energy is in fact the micro kinetic energy of the 
collection of particles in the rigid solid, rotating about the axis for which the 
moment of inertia ( and angular velocity) is computed. 
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 13.  Work; An Alternative View.  Contemplate the task of starting a 
power lawn mower.  In pulling the mower’s cord, we apply a force over a 
displacement and thus do work.  We may however wish to view this task in 
another way; we apply a torque by means of the tension in the cord and 
angularly displace the shaft of the motor.  Both views are of the same work.  
Only the view of it is different.  We derive the equivalent. 

∫ •≡ xdFWork rr
 

 Choosing our axis origin through the shaft of the motor, we both 
multiply and divide the force by the perpendicular distance from the shaft 
axis to the line of action of the force,  d⊥.   

xdF
d
dWork rr

•
⊥
⊥

≡ ∫  

 The product d⊥ F is the torque due to the force, about the axis. The 
quantity dx/ d⊥ is the angular displacement, dθ.  Substitution gives, 
 

∫ ∫ •≡•≡ θτ
rrrr

dxdFWork   (fixed axis) 
 
 We again remind the reader that these are not two separate works, 
only two alternative views of the same work. 
 

14.  Parallel Axis Theorem.  Consider a collection of particles which 
form a rigid solid, rotating about a fixed z axis (not through the center of 
mass) as shown below.  We may audit the objects energy of motion from the 
frame of reference of this fixed z axis in a number of ways.  First, as in the 
previous section, we can accept the Micro view; the sum of all the individual 
kinetic energies of the individual particles.  Second, we can accept the 
Macro view;  the rotational energy, ½ I ω2, about the z axis.   

There is however a third “combination” view of the objects energy 
which is often quite useful.  In the combination view, we add the kinetic 
energy of the objects center of mass as if it is a single particle, to the objects 
rotational energy about the objects center of mass axis which is parallel to 
the z axis.  See Appendix II.  All three views of the total energy are identical;  
they produce the same total energy. 

  

vcm 

d⊥ 

ωcm 

cm axis 

 
 

ωz  
 
 
 
 
 
 

Zaxis 
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We equate the pure rotational view of the energy about the z axis to that of 
the combination view: 

axis 
2

axis 2
1

cmcmzz REKEI +≡ω  
2

axis axis 
2

total
2

axis axis z 2
1

2
1

2
1

cmcmcmz IvmI ωω +=  

We may use the second circular to angular transform to replace vcm in the 
above equation.  . 222  ⊥= dv zcm ω
 

2
axis axis 

22
axis total

2
axis axis z 2

1
2

1
2

1
cmcmzz IdmI ωωω += ⊥  

Recalling that an angular displacement about an axis is equivalent to the 
same angular displacement about any parallel axis, axis cmaxis z ωω ≡ , we cancel 
both ½ and ωz from the above equation to give the Parallel Axis Theorem. 
 

axis 
2

totalaxis z cmIdmI += ⊥  
 
 The above derivation not only illustrates various perspectives and 
interpretations of rotational energy, but provides a most useful formula for 
computing the moment of inertia of a rigid body.  Most tables of moment of 
inertia list those values for axis’ through the center of mass of the object.  
The parallel axis theorem provides the to shift the axis of computation to 
other locations. 
 
 

15.  Rotational Equilibrium.  Beginning students of physics are 
often introduced to the concept that when an object is at rest,  

0=∑ externalF
r

 and 0=∑ externalτr  
The above being described as the first, and second, condition of equilibrium. 

Nearly all the examples presented the student involve objects at rest, 
that is zero translational acceleration and zero angular acceleration.  We 
now wish to consider the case of non-zero translational acceleration.  “Is an 
object, whose center of mass is accelerated, but is not spinning otherwise, 
angularly accelerated”?  As for example, a car on a level road, which is 
applying its brakes to stop; is the car angularly accelerated?  Before we 
formulate an answer, let us look at F=ma applied to the center of mass of 
the object. 

cmtotalex amF rr
=∑  

We cross product both sides of this equation by the instantaneous location 
vector of the center of mass, 

cmtotalcmexcm amRFR rrrr
×=× ∑  
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The quantity on the left of the equal sign is identified as the sum of the 
external torques, 

cmtotalcmex amR rrr
×=∑τ  

We arrive at the result, 

)( cmcmtotalex aRm rrr
×=∑τ  

 
With the above relationship, we now answer the question; It is a mater of 
perspective and interpretation – it is a mater of coordinate system!   

If the axis origin is located at the object’s center of mass ( or anywhere 
along the line of action of the acceleration vector acm, the cross product, 

 and we may conclude that the angular acceleration about that 
axis is zero.  This also leads to the fact that the sum of the Torques about 
that axis will also be zero. 

0=× cmcm aR rr

If however, the axis origin is located any where else, the cross product 
is not zero; and with substitution of the third circular to angular 
transformation , followed by the expansion of the triple cross 
product (similar to that used in the section – Cause and Effect), we arrive at 

cmR 
rrr

×= αta

 

ατ rrrr 2)( cmtotalcmcmtotalex RmaRm =×=∑  
 
where it is clear that the object possesses a non-zero angular acceleration. 
   

Perspective and interpretation are always considered from a 
previously selected coordinate system’s frame of reference. 
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16.  Examples. 
   

 A solid sphere of mass .5 kg and radius .4 m is released (vi=ωI=0) on a 
10 degree incline and rolls down without slippage.  We wish to determine the 
acceleration of the center of mass of the sphere, the final velocity of the 
center of mass of the sphere when it’s altitude is lowered by 2 meters, and 
the corresponding angular values as well. 
 We start with the drawing below.  A force analysis results in three 
forces externally acting on the sphere: the weight of the sphere placed at its 
center of mass, the compression and friction between the incline and sphere 
acting at the point of contact.  Coordinate system directions for translation 
are chosen; we will hold off the decision as to where the origin is located 
momentarily.  We can see that the lines of action of all forces do not 
intersect at a single point in space; this lets us know that the problem will 
involve angular components. 
 
 
 C 
 

+z 

θ 

+x 

acm 

mg 

R 
 θ 

 
 
 
 
 
 
 
 

Ff  
 
 
 Δh 

+y  
 
 
 
 
 
 
 Finding acm, solution 1.  We start with a choice of origin; it will be 
placed at the point of contact of the sphere and the incline.  Z axis out of the 
page.  The coordinate system is thus fixed to the earth frame of reference 
and instantaneously at rest. About this axis, the torque due to both C and 
Ff will be zero.  This is clever for two reasons: we do not know the value of C, 
and we do not know the value of Ff ( remember that Ff=μC is invalid since 
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there is no slippage).  The only torque producing force is mg, and this we 
know. 
We perform a torque analysis, ατ I= about this axis.  The perpendicular 
distance from the z axis to the line of action of the force mg is θsinRd ⊥= , 
and thus the torque due to mg about the z axis is mgRmgd   sinθτ =⊥= .   
Looking up the moment of inertia for a sphere we find Icm=2/5 mR2.  Since 
our axis is the z axis, not the center of mass axis, we use the parallel axis 
theorem to offset the axis a displacement of one radius. 

2222

5
7

5
2 mRmRmRmRII cmz =+=+=  

The equation, ατ I= , is applied. 
zzz I ατ =  

zmRR αθ )
5
7(mg  sin 2=  

The mass is canceled, and the radius also giving 

zRg αθ =sin
7
5  

R 
acm 

Finally, we recognize the quantity on the right as acm. 

θsin 
7
5 gacm =  

αz 
Note that the outcome does not depend on radius or mass. 
 
 Finding acm, solution 2.  In this solution approach, we place our z axis 
origin at the center of mass of the sphere for the torque computations only.  
This means that the z axis is accelerated in the earth frame of reference, but 
is at rest in the center of mass frame of reference.  The forces C and mg 
produce zero torque about the center of mass axis; the force of friction 
produces a torque of the amount,  R Ff.  The required moment of inertia is 
about the center of mass axis. 

cmcmcm I ατ =  

cmf mRFR α2

5
2 =  

cmf mRF α 
5
2

=  

It is at this point that we observe the first complication; we do not know Ff, 
nor do we have a convenient substitution for it.  We thus resort to Newton’s 
second law, applied to the center of mass particle, in the y dimension along 
the incline, for the required substitution. 

∑ = cmamF rr
 

cmf maFmg =−θsin  
)sin( cmf agmF −= θ  

We equate these two results, 
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cmcm mRagm αθ
5
2)sin( =−  

A few steps of algebra yield, 

cmcm aRg += αθ
5
2sin  

To complete the derivation, we recall that the angular acceleration about the 
center of mass axis is equivalent to the angular acceleration about any other 
parallel axis.  We choose the z axis at the point of contact, zcm αα ≡ , and 
substitute, 

cmz aRg += αθ
5
2sin  

As seen in solution 1, we now identify R αz  as acm based on the third 
circular to angular transformation and substitute. 

cmcmcm aaag
5
7

5
2sin =+=θ  

We solve for acm. 

θsin 
7
5 gacm =  

The result is of course identical.  The angular acceleration is most easily 

found by applying the third circular to angular transform, 
R

acm=α . 

 
Specific values for the posed problem give: 

22 m/s 21.110sin)(9.8m/s 
7
5

== o
cma  

2
2

rad/s  3.04
m.4
m/s 1.21

==cmα  

 
 Finding Vcm, solution 1.   In this approach, we simply use the linear 
motion equation, savv if

r r
Δ•=−  222 , and the acceleration obtained from the 

previous solution.  Here, vi=0,  and Δs=Δh/sin θ .   
sav cmfcm Δ=  22

,  

sav cmfcm Δ=  2,  

m/s 23.5)
10sin
m 2)(m/s 21.1(2 2

, == ofcmv  

This is the quickest  way to solve for vcm if acm is known. 
 
 Finding vcm, solution 2.  In this approach, we use the work energy 
theorem.  We select the earth frame of reference; the z axis origin is placed 
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at the point of contact of the sphere.  The version of the work energy 
theorem we will use is: 

cmGPEKEWork Δ+Δ=mgexcept   all  
 Reviewing the work done, C does no work since the angle between C 
and the displacement is 90 degrees; Ff does no work since the displacement 
is zero ( no slippage), and the work done by mg is excluded.  Thus, no work 
is done. 
 We will treat the kinetic energy change as purely rotational about the 
z contact axis.  The gravitational potential energy change will be negative 
(we control the sign explicitly). 

( ) hmgI zz Δ−Δ= 2

2
10 ω  

As in the previous examples, Iz is computed using the parallel axis theorem 
as Iz=7/5 mR2, and upon substitution we have, 

hmgmR fz Δ−⎟
⎠
⎞

⎜
⎝
⎛= 2

,
2

5
7

2
10 ω  

a few steps of algebra gives, 
22

10
7

zRhg ω=Δ  

We identify  using the second circular to angular 
transformation and replace in the above equation to give, 

2
,

2
,

2
fcmfz vR =ϖ

R 
vcm 

ωz 

hgv fcm Δ=
7

10
, =5.23 m/s 

The value obtained is identical to solution 1. 
 
 Finding vcm, solution 3.  This approach is quite similar to solution 2; 
we use the work energy theorem.  We select the earth frame of reference; the 
z axis origin is placed at the point of contact of the sphere.  The version of 
the work energy theorem we will use is: 

cmGPEKEWork Δ+Δ=mgexcept   all  
 Reviewing the work done, C does no work since the angle between C 
and the displacement is 90 degrees; Ff does no work since the displacement 
is zero ( no slippage), and the work done by mg is excluded.  Thus, no work 
is done. The work analysis is identical to that in solution 2. 
 What is different is that we will treat the kinetic energy change as a 
combination of the kinetic energy of the center of mass particle and add the  
rotational energy about the center of mass axis.  The gravitational potential 
energy change will be negative (we control the sign explicitly). 

cmcmcm GPEREKEWork Δ+Δ+Δ=mgexcept   all  

hmgImv cmcmfcm Δ−+= 22
, 2

1
2
10 ω  
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222
, 5

2
2
1

2
1

cmfcm mRmvhmg ω⎟
⎠
⎞

⎜
⎝
⎛+=Δ  

 
222

, 10
2

2
1

cmfcm mRmvhmg ω+=Δ  

At this point, we recall zcm ωω = , and .  Substitution in the above 
gives, 

222
cmz vR =ω

2
,

2
, 10

2
2
1

fcmfcm mvmvhmg +=Δ  

2
,10

7
fcmmvhmg =Δ  

and solving for vcm, we arrive at our result, 

hgv fcm Δ=
7

10
,  

which is identical to solution 1 and 2.   
 The combination approach using the kinetic energy of the center of 
mass plus the rotational energy about the cm axis often seems to be the 
easiest for beginning students since it simply adds the change in rotational 
energy term to the already familiar form of the work energy theorem. 
 
 Finding vcm, solution 4.  This approach is by far the least efficient 
solution.  It is presented here only to illustrate how the frame of reference 
effects the work energy distribution. 
 We apply the work energy theorem of form, 

.  What is different is that we will select as a 
frame of reference, the center of mass of our sphere.  In this frame of 
reference, we observe neither a change in altitude, nor a change in center of 
mass velocity; only a change in the micro kinetic energy of rotation.   

cmGPEKEWork Δ+Δ=mgexcept   all

 We will use as the form of the work calculation, ∫ •= θτ
rr dWork  which 

reduces to θτ Δ  for a constant torque.  The work audit suggests that the 
forces C and mg produce no torque about the center of mass axis (note mg 
would be excluded anyway do to the presence of the change in gravitational 
potential energy) and thus does no work.  The Ff is another mater.  In this 
frame of reference, the force of friction produces a constant torque about the 
center of mass axis which results in an angular displacement. Work is done 
by Ff.  Our work energy equation becomes, 

cmF RE
f

Δ=Δθτ  

2
,2

1  fcmcmf IFR ωθ =Δ  

We substitute for the moment of inertia and reduce, 
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2
,

2

5
2

2
1  fcmf mRFR ωθ ⎟

⎠
⎞

⎜
⎝
⎛=Δ  

2
,

2

10
2  fcmf mRFR ωθ =Δ  

Note that from the first circular to angular transform, RΔθ=Δs. 
 

2
,

2

10
2 fcmf mRsF ω=Δ  

Here again, we run into the problem of a suitable replacement for Ff.  We 
utilize Newton’s second law applied to the center of mass particle in the y 
dimension along the incline; cmf maFmg =−θsin . 
We solve for Ff to give )sin( cmf agmF −= θ and replace the force of friction in 
the above equation, 

2
,

2

10
2)sin( fcmcm mRsagm ωθ =Δ−  

2
,

2

10
2sin fcmcm Rsasg ωθ =Δ−Δ  

Let us recognize what we have above; hs Δ≡Δ θsin , fzfcm ,, ωω ≡ , and 

.  Substitution gives, 22
,

2
cmfz vR ≡ω

2
,10

2
fcmcm vsahg =Δ−Δ  

This now leaves us with the task of eliminating acm.  Recall from linear 
motion, .  Setting vsavv cmif

rr
Δ•=−  222

i=0 and rearranging we get 

2
,2

1
fcmcm vsa =Δ which we will substitute.  

2
,

2
, 10

2
2
1

fcmfcm vvhg =−Δ  

Final rearrangement produces the desired and identical result, 

hgv fcm Δ=
7

10
,  

 
Clearly a “scenic” exercise.  The journey does however illustrate the fact that 
the work and energy quantities may distribute them selves in different forms 
and places when viewed from different frames of reference. 
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Example.  A 200 lb bicycle(and rider) suddenly applies both brakes to 
stop.  The bicycle slides along the road way.  Coefficient of friction between 
the tires and road is .6 .  We wish to determine the center of mass 
acceleration and the friction forces on each tire.  The geometry of the bicycle 
and rider, and forces involved, are shown in the figure below. 
 
 cm 

acm  
  

+y 
Ff2 Ff1 

C2 

+x 

mg 

C1 

 
 3.5 ft 
 
 
 
 

+z  
 
 
 

2 ft 3 ft  
 
We choose the translational coordinate system as shown, the location of the 
z axis origin will be at the contact point of the front tire. With this choice, we 
recall there is a non-zero angular acceleration (see Rotational Equilibrium).  
The advantage of this selection is that many of the forces involved produce 
zero torque about the axis. 
 We perform a linear force analysis to obtain acm.  The system 
equations are: 
 

cmtff

cm

amFF
ahory

=−− 21

total ),dim(,m :System
   

mgCC
avertx

=+
=

21

total 0),dim(,m :System
      

221f1   ,F
:modelFriction 

CFC f μμ ==
 
The friction model equations are substituted into the y dim equation to give, 

cmmaCC =−− 21 μμ  
The equation is factored, 

cmmaCC =+− )( 21μ  
The x dim equation is substituted for the sum of the compression forces, 

cmmamg =−  μ  
The mass is canceled and we have our result. 

22 f/s 2.19)f/s 32)(6(. −=−=−= gacm μ  
 We now address the issue of torques.  The equation is: 

 

)( cmcmtotalex aRm rrr
×=∑τ  
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With the chosen axis, only mg and C2 produce torques.  Our equation is: 
)ft   3.5( ft) 3( ft) 5( 2 cmammgC =−  

Using mg=200 lbs, m=6.25 slugs, and acm=-19.2 f/s2, we solve for C2 to get 
C2=36 lbs 

From the vertical force balance, C1=164 lbs.  The friction forces may now be 
obtained from the friction model equations as 

Ff1=98.4 lbs and Ff2=21.6 lbs 
or a total friction force of 120 lbs. 
 
 As a quick check, we evaluate |macm|= 6.25 slugs 19.2 f/s2 = 120 lbs! 
 

We will leave it to the reader to verify that if the z axis were placed at 
the center of mass, the sum of the torques would equal zero about this axis, 
and that analysis would yield the same result. 
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17. Appendix I, Moment of Inertia Computations.  Here we derive 

the specific formula for the moment of inertia of selected objects about 
various axis through implementation of the definition, 

dmRI zz ∫ ⊥= 2
 

 
 Before the student of physics reviews these derivations however, a 

few common thoughts must be emphasized:   
• We draw attention to the coordinate system, and its origin.  

When we select the axis of revolution, for example the z axis, 
any element of matter (dm) that lies on that axis (x=y=0) must 
contribute zero moment of inertia to the object.  Its Rz must be 
zero.  Where you put your origin is extremely important. 

• An often overlooked fact is that the coordinate axis has both a 
plus and minus direction.  Recall we are using the coordinate 
system to “target” (address) elements of matter.   

• Consideration of the objects symmetry.  If the object possesses 
symmetry about the chosen axis, it will be more efficient if we 
take advantage of that symmetry. 

• The variable dm in the moment of inertial definition has 
important physical significance but is useless in the evaluation 
of the integral itself.  We will consistently use the fact that the 
object is homogeneous and uniform, and thus of constant 

density (ρ).  Therefore, 
dV
dm

Volume
M

total

total ==ρ  and dVdm  ρ= may be 

used to replace dm in the integral. 
• Finally, our tactic will in general be to: 

1. Sketch the object. 
2. Identify the axis. 
3. Identify the differential element taking advantage of 

symmetry. 
4. Target the element using the coordinate system. 
5. Identify the limits of the integral. 
6. Perform the integral. 

We proceed. 
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Long, infinitely thin object, cm axis.
By definition, infinitely thin implies that the cross section of the object 

has no distinguishing shape; the object can be considered a long thin round 
rod, a long thin square rod, etc.  Also, infinitely thin means that we need 
only consider the objects length in computing the moment of inertia.   
    cm 

axis 

dm 

 
 
 
 
 
 x=-L/2 x=L/2 

x=0 x dx  
 
 

Above, we have our sketch.  The axis is identified as out of the page 
and the origin is at the center of mass.  The differential element is located at 
x and its length is dx.  The limits are identified.  We present the integral: 

dmxI
L

L
cm ∫

+

−

=
2/

2/

2  

 To replace dm, we observe the one dimensional nature of this integral 
and will thus use the linear mass density: the mass per unit length. 

dx
dm

L
m

l ==ρ  and so the substitution becomes dxdm l  ρ= , 

dxxI
L

L
lcm ∫

+

−

=
2/

2/

2ρ  

The integral is executed to give, 
 

( ) 2/
2/

3

3
1 L

Llcm xI +

−= ρ  

and evaluated, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

8
)(

83
1 33 LLI lcm ρ  

 
3

12
1 LI lcm ρ=  

 At this point, we replace the linear mass density with L
m

l =ρ  , and 

arrive at our final form, 
 

2

12
1 mLIcm =  
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Circular Cylinder of length L, axis along length, through cm.  Below is 
our sketch, top view,  with steps 1 – 4 complete. The axis is out of the page 
and through the center of mass.  We will take advantage of the circular 
symmetry by selecting the differential element as a ring of thickness dr and 
length L.  The limits of integration will be from r=0 to r=R.  Since the object 
has area, we will use the area mass density; the mass per unit area. 
   
 

r=0 

cm axis 

r=R 

dm 
dr 

r 

 
 
 
 L 
 
 
 
 
 
 
 
 
 
 
 
We start with our moment of inertia definition,  

dmrI
R

cm ∫=
0

2  

To replace dm, we utilize the mass pre unit volume; 
dV
dm

V
m

==ρ  and 

solving for dm we get, dVdm  ρ= .  
The volume of our differential ring, from geometry, is, LdrrdV  )2( π= .  

Thus drrLdm )2( πρ= and we substitute into the integral. 

drrLI
R

cm ∫=
0

32πρ  

The integral is executed and evaluated to give, 

( ) 4
0

4

2
1

4
2 RLrLI R

cm πρπρ ==  

We replace the density, 
LR

m
2π

ρ =  to get, 

2

2
1 mRIcm =  

 
Notice that the length of the cylinder does not appear in the final result.  
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Flat Circular Plate, infinitely thin, axis within the plane of the area.  
 
This object is somewhat different than the long thin rod in that it has 

a finite area and is thus two dimensional.  We will take this opportunity to 
illustrate a trigonometric substitution of variable.  Below is our sketch with 
steps 1 through 4 complete. The axis is within the page as shown and 
through the center of mass.  A vertical strip will be chosen as the differential 
element. The perpendicular distance to the differential element is x. 

 

x=-R 

Axis 

R 

θ 
x 

x=0 

dm 

 dx 

 
 
   
 
 
 
 
 

x=+R    
 
 
 
 
 
 
 
 
 
 

The integral to evaluate is:   .  To put this in executable 

form we require a few substitutions, 

dmxI
R

R
cm ∫

−

+

= 2

dAdm
dA
dm

A
m

AA ρρ ===     thus,  

and 
 

geometry from , )sin(2 dxRdA θ=  
 Since θ is a function of x, we will replace x with θ and take the 
integration limits from θ=π (formerly –R) to θ=0 rad (formerly +R).  From 
trigonometry,  

θcosRx =  
and differentiation of the above gives, 

θθ dRdx   sin=  
Replacement of dm with much substitution gives, 

θθρθθθρθρρ dRdRRdxRdAdm AAAA
22 )(sin2)sin(sin 2sin2 ====  

G. Kapp, 11/4/09 30 



Substitution of x and dm into the integral gives, 

θθθρ
π

dRRdmxI A

R

R
cm

2

0

22 )sin()cos(2 ∫∫ ==
−

 

Now from trigonometry θθθ 2sin
2
1cossin =  .  We substitute and simplify, 

θθρ
π

dRI Acm
2

0

4 )2(sin
2
1

∫=  

From tables of integrals, we find )2sin(
4
1

2
1)(sin 2 ax

a
xdxax −=∫  and apply it to 

our integral, 
ππ

θθρθθρ
0

42

0

4 )4sin(
4
1

22
1)2(sin

2
1

⎭
⎬
⎫

⎩
⎨
⎧ −== ∫ RdRI AAcm  

which simplifies to, 
4

4
RI Acm ρπ

=  

Replacing the density with 2R
m

A π
ρ =  , we arrive at the final result,  

 

2

4
1 mRIcm =  

 
 
 
 
     Circular Hoop, Infinitely Thin, Axis normal to Hoop through cm. 
Since all the mass of the hoop is at a perpendicular distance R from its 
center, the moment of inertia formula is identical to that of a point mass.  
No derivation is necessary. 

R 

Axis  
 

 
 
 
  
 
 
 

2mRIcm =  
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Rectangular Slab, cm Axis.   
 We take this opportunity to introduce an interesting and efficient 
technique called a multiple integral to compute the moment of inertia of a 
rectangular slab.  The multiple integral is often used to address points in 
space on an object when the object and the coordinate system have similar 
symmetry.  The technique is based on the fact that the vector components 
are independent of each other (orthogonal) and may therefore be changed 
(moved) independently of each other to address (target) each point in the 
object.  Consider the following diagram. 

c 

b 

Axis +y 

+z 

dz 

dx 
x 

z 

dm 

 
 
 
 
 
 
 
 +x 
 
 
 
 
 
 
 
 
 

a  
 
 
Our differential element, dm, has a volume dV= c dx dz  .  We will use the 

volumetric mass density, dzdxcdVdm
dV
dm

V
m      dm,for  solving and ,  ρρρ ==== . 

Our integral for consideration is, 
dmRIcm ∫ ⊥= 2  

In the above integral,  and so we replace it. 222 zxR +=⊥

( )dmzxIcm ∫ += 22  
As you are observing, we are systematically replacing our variables 

with functions of x and z.  Once this is accomplished, the double integral 
will effectively move our differential element over the x – z surface, collecting 
each elements contribution to the moment of inertia of the slab.   
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Next, we replace dm and show the result as a double integral.  Notice 
the limits of integration will sweep the x – z surface of our slab. 

( ) dzdxczxI
b

b

a

acm    
2/

2/

2/

2/

22 ρ∫ ∫
+

−

+

−
+=  

At this point, we explain the procedure to evaluate the above double 
integral.  In our case, we have two variables, x, and z.  We will start with x 
and integrate considering z to be constant.  Then we will integrate again on 
the remaining variable, z.  The order should not be important since x and z 
are orthogonal.  This method in effect, sums the x components first, and 
then the z components. 
 Starting with, 

( ) dzdxczxI
b

b

a

acm    
2/

2/

2/

2/

22 ρ∫ ∫
+

−

+

−
+=  

First we integrate on x, 

dzxzxcI
a

a

b

b
cm

2/

2/

2
32/

2/ 3
 

+

−

+

−
⎥
⎦

⎤
⎢
⎣

⎡
+= ∫ρ  

and evaluate. 
 

dzazacI
b

b
cm ⎥

⎦

⎤
⎢
⎣

⎡
+= ∫

+

−

2
32/

2/ 12
 ρ  

 
Next, we integrate on z (a is constant), 
 

2/

2/

33

312
 

b

b
cm

zazacI
+

−
⎥
⎦

⎤
⎢
⎣

⎡
+= ρ  

and evaluate. 
 

( )33 
12
1 abbacIcm += ρ  

Finally, we replace the density with 
abc
m

=ρ  , and arrive at our result: 

 

( )22

12
1 bamIcm +=  

 
Note that the dimension, c, does not appear in the final result.  This is 

as expected since that dimension is parallel the axis of the calculation. 
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Solid Sphere, cm axis.  Rather than using the definition, , to 

compute the moment of inertia, our tactic will be to select a differential 
element in the shape of a thin circular disk; a slice of the sphere.  We then 
sum (through integration) the contribution of each slice to the moment of 
inertia of the entire sphere. 

dmRI ∫= 2

+z 

+x 

y R 
x 

 +y 

axis 

disk 
dm 
disk 
dm 

dm x 

 
 
 
 
 
 
 dy 
 
 
 
 
 
 
 
We start with our summation equation, 

∫=
all

cm dII  

Borrowing the result for the moment of inertia of a cylinder, our disk is 
infinitely thin and of infinitely small mass, and as such has an infinitely 

small moment of inertia,  2 
2
1 xdmdIcm = .  We will require a replacement for 

both dm and x2. 
For the dm substitution, we replace as dm =  ρ dV= ρ πx2 dy.  For the 

x substitution, we rely on the Pythagorean theorem, R2 = x2 + y2 , thus       
x2 = R2 – y2.  We now replace. 

 

dyyyRdmxdII
all

cm )(R )(
2
1

2
1 22222 −−=== ∫∫∫ πρ  

dyyRI
R

R
cm

222 )(
2
1

−= ∫
+

−

ρπ  

We expand, 

dyyyRRI
R

R
cm )2(

2
1 4224 +−= ∫

+

−

ρπ  

and change the limits of integration, 
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dyyyRRI
R

cm )2(
2
12 4224

0

+−= ∫ρπ  

and perform the integration and evaluation, 

⎥⎦
⎤

⎢⎣
⎡ +−= 555

5
1

3
2 RRRIcm ρπ  

5

15
8 RIcm ρπ=  

and finally, we replace the density with 
3

3
4 R

m
π

ρ = , to arrive at our result,  

 

2

5
2 mRIcm =  

 
 
 
 Long circular rod, cm axis, normal to the length.  In this final 
calculation, we will use yet another method.   We will incorporate the result 
of the “Flat Circular Plate, infinitely thin, axis within the plane of the area” 
derivation outcome, and the parallel axis theorem.  The tactic is to first 
select the flat circular plate as our differential element, to offset the axis of 
our flat circular plate using the parallel axis theorem, and to sum, using 
integration, the contribution of each plate in the circular rod. 
 

R 

cm 
axis 

x=0 

dm 

-L/2 
+L/2 

 
 
 
 
 
 
 
 
 
 
 

x dx  
 
 

We start with the summation,   .  The moment of inertia of the 

infinitely thin disk about it’s own axis, as derived, is 

∫=
all

cm dII

2 
4
1 RdmdI = . 
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Using the parallel axis theorem, we adjust the moment of inertia to the 
Rod’s cm axis as,  

22  x
4
1 dmdmRdI +=  

and replace it in the integral.  

∫ ⎟
⎠
⎞

⎜
⎝
⎛ += dmxdmRIcm

22

4
1  

We now seek a substitution for dm using the density.  
dxR

dm
V
m

2π
ρ ==  

and so .  We substitute to get,  dxdm 2R πρ=

dxRxRIcm
222

4
1 ρπ∫ ⎟

⎠
⎞

⎜
⎝
⎛ +=  

Removal of the constants from the integral gives, 

dxxRRI
L

L
cm )

4
1( 22

2/

2/

2 += ∫
+

−

ρπ  

and a limit change for ease of evaluation gives, 

dxxRRI
L

cm )
4
1(2 22

2/

0

2 += ∫
+

ρπ  

We integrate to give, 
2/

0

3
22

34
12

L

cm
xxRRI

+

⎥
⎦

⎤
⎢
⎣

⎡
+= ρπ  

Evaluation of limits gives, 

⎥
⎦

⎤
⎢
⎣

⎡
+=

248
2

32
2 LLRRIcm ρπ  

We now replace the density as 
LR

m
2π

ρ = , and arrive at our final form, 

 

22

12
1

4
1 mLmRIcm +=  

 
 In comparing this result to the infinitely thin object, we see that the 
above formula carries an extra term for the finite round rod.  It may also be 
interesting to note that for a rod with a length to diameter ratio of 10:1, the 
additional term affects the result at its third significant figure.   
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18.  Appendix II.  The Combination Method for determining Total 
Kinetic Energy.     
 
The total energy of motion of a collection of particles is simply the scalar 
sum of the individual kinetic energies of all of the particles in the collection.   
 

...
2
1

2
1 2

22
2
11 vmvmKETotal +=  

Since this total energy is based on each particles velocity, which is in turn 
based of some given frame of reference, the total energy must also be based 
on the frame of reference from which the velocities are measured.   
 
     Here, we wish to consider the kinetic energy of a group of particles as 
determined both from some fixed frame of reference (such as the earth 
frame of reference), and from the frame of reference of the collections center 
of mass, which is moving with respect to the fixed earth frame of reference.   
 
     Let  be a particles velocity measured in the frame of reference of the 

collections center of mass, and let  be the particles velocity measured in 

the fixed earth frame of reference, and let  be the velocity of the center of 

mass as measured in the fixed earth frame of reference. 

cm
v

e
v

e
cmV

 
   The Galilean transformation relating these three velocities is: 

e
cm

cme
Vvv +=  

 
     The Total kinetic energy of the collection, as determined from the earth 
frame of reference, is thus 

2

1
)(

2
1

i
e

n

i
i

totale
vKE m∑

=

=⎟
⎠
⎞

⎜
⎝
⎛  

on application of the Galilean transformation, 
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1
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2
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i
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next, we expand the squared quantity, 
 

i

eecmcm
i

n

itotale cmcmm VVvvKE )222(
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1
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⎠
⎞
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we distribute the summation, 
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we identify the first and third summation, 
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Since  from the definition of the center of mass velocity, the 

center summation becomes, 

i

n

i
icmtotal vmVM ∑

=

≡
1
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e
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cm
cmtotal

e
cm

totalcmtotale
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and the velocity of the center of mass of the collection, in it’s own frame of 
reference (the frame of reference of the center of mass) is equal to ZERO. 
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totalcmtotale
VMKEKE +⎟
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     Thus, the total kinetic energy of the system of particles in the earth 
frame of reference is equal to the total kinetic energy of the system of 
particles as determined from the frame of reference of the center of mass, 
PLUS the kinetic energy of the “center of mass particle” in the earth frame of 
reference. 
 
     For the case of a rigid solid which is rolling on a surface in the earth 
frame of reference, we may compute the total kinetic energy in the earth 
frame of reference by adding the “rotational energy” , computed from 

2

2
1 ωcm

cm
IRE =  (center of mass frame of reference), to the translation kinetic 

energy of the “center of mass particle”, computed from
e

cmtotal
e

vMKE 2

2
1

= in the 

earth frame of reference.  This is the “Combination Method”. 
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